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ABSTRACT 

Reverse correlation methods have been widely used in neuroscience for many years and have 

recently been applied to study the sensitivity of human brain signals (EEG, MEG) to complex 

visual stimuli. Here we employ one such method, Bubbles (Gosselin & Schyns, 2001), in 

conjunction with fMRI in the context of a 3AFC facial expression categorization task. We 

highlight the regions of the brain showing significant sensitivity with respect to the critical visual 

information required to perform the categorization judgments. Moreover, we reveal the actual 

subset of visual information which modulates BOLD sensitivity within each such brain region. 

Finally, we show the potential which lies within analyzing brain function in terms of the 

information states of different brain regions.  Thus, we can now analyse human brain function in 

terms of the specific visual information different brain regions process. 
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The use of reverse correlation methods in neuroscience, and in neurophysiology in particular, has 

a long history (see Ringach & Shapley, 2004). Recently similar methods have been applied by 

researchers studying high-level vision in humans and non-human primates (Adolphs et al., 2005; 

Gosselin & Schyns, 2001; Sekuler et al, 2004; Smith et al., 2004; Neilsen et al., 2006; 2007). The 

great asset of these methods is that they provide a fine grained representation of the stimulus 

information which is optimal for some response function: for example, for a behavioural decision 

or that which tunes a given population of neurons. On each trial of an experiment observers are 

presented with randomly distorted information while the experimenter measures a given 

dependent variable such as the correct performance of an observer, or the amplitude of a brain 

signal. The given dependent variable is then reverse correlated with the stimulus information 

presented on each trial. Reverse correlation methods can depict the information subspace that was 

most effective for a given brain region (or a certain behaviour).  This contrasts with the more 

common forward correlation methods that detect brain regions (or behaviour) correlating with 

significant variation of the inputs (e.g. different object categories). 

Recently, a particular instantiation of reverse correlation methods (i.e. Bubbles) has been 

applied to the analysis of human brain signals such as EEG (Smith et al., 2004; 2006; 2007a; 

Schyns et al., 2003, 2007) and MEG (Smith et al., 2007b).  Bubbles is an information sampling 

technique that presents sparse samples of stimulus information to an observer--for example, the 

image is randomly sampled through Gaussian apertures either in the 2D image plane or in a 3D 

space encompassing both the image plane plus spatial frequency bands (see Figure 1, and 

Gosselin & Schyns, 2001). By reverse correlating observers’ performance with the information 

samples Bubbles determines the information subspace that is diagnostic for a particular 

behavioural decision, or that which is correlated with the modulations of a particular brain signal. 

For example, Smith et al. (2004) have shown, that it is possible to characterise the evolution of 

brain sensitivity to face information over the time course of the N170 (eye sensitive stage) and 

P300 (task sensitive stage) ERP components and further have found that different diagnostic 

portions of the spatial frequency spectrum correlate with different EEG temporal frequency bands 
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in stimulus perception (Smith et al., 2006). The method has also been used to demonstrate that the 

N170 integrates visual information from the eyes of a face downwards, terminating when the 

diagnostic feature relevant to the current judgement is reached (Schyns et al., 2007). 

 Building on these lines of research, we sought to apply Bubbles to the analysis of fMRI 

data. Standard methods of fMRI data analysis involve the contrast of activation patterns obtained 

from a small number of experimental conditions of interest, relying essentially on a subtractive 

method. Such methods do not have much power to resolve questions regarding the fine-grained 

response properties of given voxels in the human brain, beyond a basic correlation of a given 

voxel with a given experimental condition. More recent analysis methods (e.g. Kamitani & Tong, 

2005; Haynes & Rees., 2005; Haxby et al., 2001; Kriegeskorte et al., 2006) have shown that it is 

possible to find reliable brain sensitivity to specific types of information (e.g. visual category, 

orientation) that is distributed weakly across many voxels, when the approach is multivariate. 

Hence this kind of sensitivity is not evident from standard, univariate, methods of analysis. 

The Bubbles method, like the newer multivariate techniques, goes beyond standard 

methods of fMRI data analysis. The power of Bubbles, however, is to provide a fine-grained 

description (2D image) of the response properties of each individual voxel (these can be summed 

across a collection of voxels to represent a region of the brain) with respect to the visual 

information contained in complex stimuli (hence it is univariate in the present implementation). 

That is, in terms of describing what features of some (reasonably complex) input stimulus (such 

as a face) correlate with modulations of signal amplitudes at each specific voxel (i.e. to find the 

“optimal” stimulus for each voxel relative to the given task). Thus, for instance, we might expect 

a set of brain regions to highly correlate with the presentation of the eyes when participants make 

fearful judgements to faces (i.e. the diagnostic information), whereas to the mouth when 

participants make happy judgements (e.g. Smith et al., 2005; Adolphs et al., 2005; Schyns et al., 

2007).  

It is unclear from work using standard subtractive methods what the regions usually 

activated in such tasks actually do, in terms of the face information they are sensitive to. Hence 
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the potential of Bubbles is to provide such a characterisation, an important step to depict the brain 

as an information processing system (Smith et al., 2007). 

 Our observers performed a 3AFC expressions categorization task where they had to 

decide whether each sparsely sampled face (see Figure 1 and Methods) was a happy, fearful or 

neutral face. We concurrently measured the fMRI BOLD signal elicited. We reverse correlated 

BOLD amplitudes to information samples, after appropriate preprocessing, to reveal the 

‘information states’ of each voxel in the brain. That is, to reveal the facial information modulating 

each voxel across different emotional expressions. 
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Methods 

Stimuli 

Original face stimuli were gray-scale images of five females and five males taken under 

standardized illumination, each displaying three facial expressions (happy, fearful, neutral). All 

30 stimuli (normalized for the location of the nose and mouth) complied with the Facial Action 

Coding System (FACS; Ekman & Friesen, 1978), and form part of the California Facial 

Expressions  (CAFE) database (Dailey, Cottrell & Reilley, 2001). 

 

Participants 

Two adult subjects (ETS & EGA) with normal (or corrected to normal) vision 

participated in the study. Both gave informed consent prior to taking part in the experiment. The 

procedure of the experiment was approved by the local ethics committee in Frankfurt. 

 

Imaging Methods 

Participants performed multiple runs of the present experiment (ETS – 20; EGA – 12), 

with four or more runs collected in each scanning session. Different scanning sessions were 

performed on different days. During each functional run, we acquired 572 EPI image volumes (17 

slices, 3 Tesla Siemens Allegra and Trio, TR=1000ms, TE=30ms, FA=62, 3.1 x 3.1 x 4mm, 

PACE motion correction, PSF distortion correction) resulting in 11,440 EPI image volumes for 

ETS and 6,864 for EGA. In addition we acquired a high resolution 3D anatomical reference scan 

(magnetization-prepared rapid acquisition gradient echo MPRAGE sequence, TR, 2000 ms; TE, 

4.38 ms; FA, 15°; FOV, 240; voxel size, 1x1x1mm3) for the first scanning session and lower 

resolution reference scans (3D MPRAGE, TR, 1240 ms; TE, 2.6 ms; voxel size, 1x1x2 mm3) in 

some of the subsequent scanning sessions, which were later aligned to the first high resolution 

reference scan. MR Imaging was performed at the Brain Imaging Center in Frankfurt (BIC-

Frankfurt). 
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Experimental Paradigm 

Prior to the experimental runs in the scanner, participants had to achieve a criterion level 

(95%) of performance in expression classification of the original face images used in the 

experiment. Participants performed multiple runs of the main experiment, where each run 

consisted of 138 trials. We discarded the first three trials from each run in order to compensate for 

signal stabilisation. We further controlled the assignment of expression to trials for a history of 

two previous trials. Within each run each expression was repeated 45 times (excluding the first 

three trials) across 10 identities, with the repetition of each identity for each expression 

counterbalanced across couplets of runs.  On each trial participants were presented with a sparse 

version of one face (see Figure 1, visual angle of approximately 7 by 4.5 degrees), which we 

generated by randomly sampling the 2D image space with Gaussian apertures (sigma=0.28 

degrees of visual angle), using the Bubbles technique (Gosselin & Schyns, 2001). A different but 

constant number of apertures were used for each expression based on pilot work, with different 

participants, estimating the number required to keep participants at 75% correct for each 

expression (17, 29 and 34, for happy, fear and neutral respectively). Note that we only include the 

neutral condition in order to obtain a reasonable level of task complexity: if we only include 

happy and fear we risk observers being able to determine the expression category solely on the 

basis of one feature (such as the presence or absence of the wide open mouth) and hence not 

process important information for the other category (i.e. the eyes in fear). Including the neutral 

condition lessens the chance of observers adopting such a strategy. As such, the fMRI data of the 

neutral condition is not analysed in the present paper. 

------------------------------------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

------------------------------------------------------------------------- 
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Participants had to judge the expression of the sparse stimulus (happy, fearful or neutral) 

by pressing the appropriate response key. A fixation marker (a small black and white 

checkerboard, 0.1X0.1 degrees) remained on the centre of the screen throughout all trials in each 

run. After the first 400 ms of each trial, a sparse stimulus appeared for 400 ms. There was then a 

response interval of 3200 ms. Participants were required to maintain fixation on the checkerboard 

throughout each run in order to decrease the chance of any eye movements affecting the data. 

 

Classification Image Analysis (1) – behaviour 

On each trial of the expression categorization task, the randomly located Gaussian 

apertures make up a two-dimensional mask (the bubble mask) that reveals a sparse face. 

Observers will tend to be correct when this sampled information is diagnostic for the 

categorization of the considered expression. To identify the image features used for each facial 

expression categorization, the probability of being correct was computed per pixel. We compute 

this by summing together all the bubble masks leading to correct categorizations, for a given 

expression, and dividing the result by the sum of all bubble masks shown (for correct and 

incorrect categorizations) for that expression. This is analogous to performing a least-square 

multiple regression. These probabilities were then transformed into Z-scores and thresholded to 

locate the statistically significant regions (p < .05, Cluster Test, Chauvin et al., 2005) 

corresponding to the features used to accurately perform the categorization of each expression. If 

multiplied with the original face image the thresholded Z-score maps reveal the essential 

information necessary for performing the categorization correctly: we refer to such information as 

the diagnostic information. 
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Classification Image Analysis (2) – brain 

The following steps were carried out independently for each observer. Functional data for 

each run of the experiment were slice time corrected, corrected for 3D motion, temporally filtered 

(high pass filtered at 0.01hz, and linearly detrended), and finally spatially normalised into the 

Talaraich space with Brain Voyager QX (Brain Innovation, Masstricht, The Netherlands). Further 

analysis was carried out in Matlab (Mathworks, Massachusetts, US). For every trial, for each 

voxel and run, we select out the BOLD amplitude value at a relatively early time point where we 

expected the haemodynamic response function to capture valuable information, which here we 

took at 4 s post-stimulus onset. We chose this delay after preliminary analyses, similar to those 

which we report below, demonstrated that good visual information sensitivity was found here. We 

then z-scored the selected BOLD data independently for each voxel within each run. 

 

------------------------------------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

------------------------------------------------------------------------- 

 

For each voxel, independently for each expression, we define the classification image as 

the sum of all the bubble masks leading to greater than that voxel’s median BOLD amplitude, 

minus the sum of all the bubble masks leading to less than that voxel’s median BOLD amplitude 

(see Figure 2). Thus we have one classification image per voxel, per expression and per observer. 

The classification image describes what visual information modulates BOLD activity for a given 

voxel, expression and observer. 
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Diagnostic Information Sensitivity 

We measure the diagnostic information sensitivity of each voxel, for a given expression and 

observer, by pearson-correlating the raw classification image (i.e. unthresholded) obtained for 

each voxel with a diagnostic template (thresholded, liberally at z > 1.96) obtained from behaviour 

(see Figures 1 & 2). This allows us to produce an r-map of the brain where high values indicate 

regions which are highly sensitive (i.e. have higher BOLD signal) to the information required to 

perform the task. Note that we correlate both a mouth (diagnostic template for happy) and an eyes 

(diagnostic template for fear) template with the voxel-based classification images for each 

expression independently. This allows us to separate out brain regions which are sensitive to 

diagnostic information from those sensitive to specific visual features across the expressions. 

Thus we obtain four r-maps for each observer, consisting of both a mouth (diagnostic for happy; 

non-diagnostic for fear) and an eyes (diagnostic for fear; non-diagnostic for happy) sensitivity 

map for each expression (happy and fear) analysed. 

 

Significance of r-maps 

We need to devise a method which will allow us to infer which voxels, in a given r-map, display a 

non-chance relationship (r-value) with the relevant template. In order to assess the significance of 

the r values in our r-maps, we perform a randomisation test where we create a series of null 

distributions, one per voxel, independently for each expression, observer and template (note we 

have an independent set of classification images for each expression and observer). To create one 

such series, we randomly permute the mapping of BOLD amplitudes to bubble masks 999 times, 

while each time using the given mapping to create a classification image for each voxel (this 

preserves within each random mapping the inter-correlational structure of the real BOLD data). 

We correlate, on each mapping, each voxel’s classification image with the relevant template to 

obtain the set of r-values for that mapping. The null distribution for any voxel is simply the 

distribution of r-values which we obtain for that voxel across the 999 random mappings. The 
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(one-sided) p value for a given voxel is simply the probability of observing the actual r value (or 

greater) in the null distribution (we compute it as the number of times a value equal to, or greater 

than the actual r occurs in the null distribution, as our hypothesis is one sided). Thus we obtain a 

p-map for each expression, template and observer. Finally, in order to correct for multiple 

comparisons, we set a cluster level threshold (see Rainer et al., 2006; Forman et al., 1995) for 

each p-map independently, based on keeping the probability of observing a false positive cluster 

at .05 (voxel-wise p values are first thresholded at p <= .05 in this procedure).  

 

 

 

Information States of Brain Regions 

In addition to discovering where significant information sensitivity is present across the brain, we 

also want to be able to describe the specific visual information each sensitive region is maximally 

modulated by. To describe the information state of a whole brain region, i.e. a cluster of voxels 

displaying significant information sensitivity (such as left Anterior Cingulate or right Fusiform 

Gyrus) for a particular observer, expression and template, we sum together all the voxel-based 

classification images (across voxels) within that region for the given observer and expression, and 

threshold the resulting image at z>=1.96 to reveal the visual information which modulates activity 

within this region.  

 

 

 

Reverse Analysis 

In order to corroborate our analysis we performed a reverse analysis: independently for each 

observer, we ran a GLM with four regressors. Each regressor represented, for a given expression,  

the correlation between each bubble mask shown, and a given feature template (i.e. mouth or 
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eyes; two expressions X two features = 4 regressors). This allows us to search for voxels 

displaying a significant relation between BOLD amplitude and the amount of visual feature 

(mouth or eye) information revealed. We performed this analysis first of all using a HRF sample 

point of 4s post-stimulus (for comparability to our forward analysis).  Due to the relative ease 

with which such an analysis can be run in comparison with our forward analysis, we also ran the 

analysis sampling the HRF every second between 2 and 8 s post stimulus for a richer 

representation of the underlying effects. 

------------------------------------------------------------------------- 

INSERT FIGURE 3 ABOUT HERE 
------------------------------------------------------------------------- 

 

Results & Discussion 

We show, in Figure 1, the visual information which each participant required to correctly classify 

the sparse faces for each expression (note we do not analyse the neutral condition in what 

follows). Replicating previous work, we find that the eyes are especially important for correct 

classification of fear whereas the mouth is important for correct classification of happy faces (e.g. 

Smith et al., 2005; Adolphs et al., 2005; Schyns et al., 2007).  Independently for each observer 

and expression, we pearson-correlated their voxel-based classification images with both an eye 

(diagnostic for fear) and a mouth (diagnostic for happy) feature template (see Methods, 

Diagnostic Information Sensitivity). Significant regions (voxel wise p <=.05, cluster level p<=.05, 

cluster size of 300 voxels) of information sensitivity for each combination of expression, feature 

template, and observer are reported in Table 1.  

------------------------------------------------------------------------- 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 13

INSERT TABLE 1 ABOUT HERE 

------------------------------------------------------------------------- 
 

Regions of Brain Sensitivity to Diagnostic Information  

Figure 3a shows the brain regions, for observer ETS on happy trials, responding significantly to 

diagnostic information (the mouth) alongside the face information each region is sensitive to. We 

find significant sensitivity in the anterior cingulate bilaterally and in right posterior cingulate. 

These regions are known to be important in the processing of facial emotion (e.g. Bush et al., 

2000; Britton et al., 2006 – anterior; Winston et al., 2003a - anterior and posterior). In addition, 

we find significant sensitivity in both the right middle temporal gyrus and in left inferior occipital 

gyrus, both of which are areas important in face perception (Haxby et al., 2000) and have been 

found active in facial expression tasks, albeit for different expressions than happy (e.g. Fitzgerald 

et al., 2006). Figure 3a also shows the face information each of these regions is maximally 

sensitive to: thus we can ascribe specific information content to the processing of each of these 

regions. We are the first to demonstrate that this putative network of regions important in emotion 

recognition is highly sensitive to the face information needed for correct behavioural performance 

(note that no significant sensitivity to the eyes is found anywhere in the brain on happy trials).

 Turning now to the same condition for observer EGA (see Figure 3b), we find two 

different regions showing significant sensitivity: right insula and right parietal cortex (precuneus). 

The insula is another structure that has been found to be important in expression tasks (e.g. 

Winston et al., 2003a; Britton et al., 2006; Adolphs, 2002) while precuneus activation has also 

been reported (e.g. Wang et al., 2004; Habel et al., 2005, with respect to induction of sad 

emotions).   We defer a comparison of the brain regions showing sensitivity across our two 

observers to a later section (see Reverse Analysis).  
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------------------------------------------------------------------------- 

INSERT FIGURE 4 ABOUT HERE 
------------------------------------------------------------------------- 

 

Figure 4 shows the significantly sensitive (voxel-wise p<=.05; cluster threshold p<=.05) 

regions to both diagnostic (eyes) and non-diagnostic (mouth) information for observer ETS on 

fearful trials (nothing significant at these thresholds for EGA, most likely due to the smaller 

number of trials collected for this participant). The only region sensitive to the diagnostic 

information is the superior frontal gyrus whereas we find that the lingual gyrus, cuneus and 

parahippocampal gyrus are all sensitive to the mouth. More specifically, it seems that the latter 

regions are responding to a conjunction of eye and mouth information on fear trials.  All these 

regions have been implicated in facial expression processing (e.g. Fitzgerald et al., 2006; Fu et al., 

2007). 

If we examine which regions are sensitive on fearful trials for observer ETS, under the 

liberal threshold (see Supplementary Table 1; see Supplemenatry Table 2 for EGA under a liberal 

threshold), we find reliable fusiform gyrus sensitivity to both the eyes and the mouth. This is 

consistent with previous reports of enhanced rFFA (Fusiform Face Area; see Kanwisher & 

Yovel., 2006) activation to fearful faces (e.g. Vuilleumier et al., 2003; Winston et al., 2003b; 

Fitzgerald et al., 2006). This contrasts with the pattern observed on happy trials, where there is no 

evidence of rFFA sensitivity whatsoever. It might seem, moreover, somewhat surprising that we 

find no reliable amygdala sensitivity on fearful trials, for either observer (even under the more 

liberal threshold) given the wealth of evidence highlighting the connection between amygdala 

activity and fearful faces (e.g. Whalen et al., 2004; Vuilleumier et al., 2003; Morris et al., 1996). 

It is important to realise, however, that our scanning protocol was not optimised for targeting this 

region: we sought to optimise the signal originating from the occipito-temporal areas. 
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Thus, in summary, we have shown that the Bubbles method can be used with fMRI to 

localise sensitive brain regions, in theoretically meaningful brain areas, and to depict the visual 

information processing strategies of each such region. 

 

 

------------------------------------------------------------------------- 

INSERT FIGURE 5 ABOUT HERE 
------------------------------------------------------------------------- 

 

Reverse (GLM) Analysis 

In order to corroborate the results obtained with the Bubbles approach, we also performed a 

reverse analysis (see Method).1 As opposed to sorting bubble masks as a function of BOLD 

amplitude, deriving a classification image and correlating this with feature templates (as one does 

in the forward analysis) we here assign each trial a continuous value which measures the extent to 

which the bubble mask for that trial is a good representation of either the eyes or the mouth 

(different regressors), independently for each expression (four regressors in total). This allows us 

to search for brain regions displaying a strong relation between BOLD amplitude and the 

presence of an important visual feature (i.e. the eyes or the mouth) by using a standard GLM. 

 We present, in Figure 5, a comparison of the two methods of analysis for an HRF sample  

point of 4s (for observer ETS): we observe a good degree of agreement for each expression. Note 

the clear agreement, for diagnostic happy, in bilateral anterior cingulate and right middle temporal 

gyrus  (good agreement is also present for posterior cingulate and inferior occipital gyrus though 

harder to visualise on the flatmap projection), and for diagnostic fear, in the superior frontal gyrus 

                                                 
1 We are most grateful to an anonymous reviewer for pointing out the feasibility of such an approach. 
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(left). Thus we have corroborated our main results by two different approaches. The results for 

the second observer (not shown) are comparable. 

 

------------------------------------------------------------------------- 

INSERT FIGURE 6 ABOUT HERE 
------------------------------------------------------------------------- 

 

In addition to corroborating our main results with two different methods, we present in 

Figure 6, a (whole-brain) comparison between our two observers for a HRF sample point of 4s 

(note we set different thresholds per observer due to the different number of trials collected).  We 

observe an overlap in sensitivity in three main regions: bilateral anterior cingulate, right superior 

temporal sulcus (around Middle Temporal Gyrus), and a region around cuneus / pre-cuneus 

bordering posterior cingulate. Given the different number of trials obtained for each observer we 

believe the agreement seen is reasonable. Thus the new whole-brain projection, at offset 

thresholds, has shown that there are several regions of consistent sensitivity across observers. 

 

------------------------------------------------------------------------- 

INSERT FIGURE 7 ABOUT HERE 
------------------------------------------------------------------------- 

 

Furthermore, due to the relative ease of performing the GLM, we were able to run this 

analysis over a series of HRF sample points. We show the results of such an analysis in Figure 7a. 

Note the gradual emergence and disappearance of strong bilateral activity around the middle 
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temporal gyri, and the region encompassing the cuneus / precuneus bordering posterior cingulate, 

at a time frame of 3 to 7 s post-stimulus. We observe this pattern more strongly for diagnostic 

happy than diagnostic fear but it seems to be present in both cases. Note, in addition, the strong 

activity in the anterior cingulate region for diagnostic happy (this is only observed fleetingly for 

fear). Thus, we can be confident of the important role these regions play in the present task. 

 In Figure 7b, we also present a time course analysis for several ROIs defined significant 

at an HRF sample point of 4s. These plots clearly show the relevant areas responding selectively 

to either diagnostic happy (left anterior cingulate; right middle temporal gyrus) or diagnostic fear 

(left superior frontal gyrus). Thus it seems that the highlighted regions do show selective 

sensitivity for the diagnostic feature of one given expression. 

 

------------------------------------------------------------------------- 

INSERT FIGURE 8 ABOUT HERE 

------------------------------------------------------------------------- 
 

Information of Sensitive Brain Regions  

We now highlight the potential which lies in directly analysing the actual visual information that 

modulates each sensitive brain region, for a given observer, expression and template. Figure 8 

shows, on the right hand side, the classification images for all brain regions sensitive to diagnostic 

information (there are 18 such regions) for observer ETS on happy trials (defined from the 

Bubbles analysis method).  We have picked out this combination of observer, expression and 

template for the purposes of providing a demonstration. Although there may not seem to be large 

differences in visual information use across these 18 regions, there are certainly subtle differences 

in the use of information, especially as concerns the mouth. It can clearly be seen that the 
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similarity of information use between related brain areas, in particular between the left and right 

anterior cingulate (Figure 8, fourth row) and the left and right lingual gyrus (Figure 8, first row) is 

high. We formalised these notions by performing a cluster analysis on the classification images 

shown on the right hand side in Figure 8. The images are in fact shown organised by clusters in 

Figure 8, where each row represents a different cluster, with the cluster centroid presented second 

from the left hand side. It is clear that on all possible occasions where bilateral sensitivity was 

evident those bilateral structures are grouped together by the cluster analysis. The probability of 

observing this pattern by chance for each pair of bilateral structures is low.2 Thus our method may 

provide a way to identify candidate networks of brain regions solely in terms of the stimulus 

information they are maximally responsive to. 

 

General Discussion 

 In summary, we have mapped out the information sensitivity of the brain for the 

categorization of two emotions, happy and fearful, and two observers, depicting the brain regions 

which are significantly modulated by the diagnostic (and non-diagnostic) information for each 

categorisation. In addition, we have shown the ‘information state’ of each such brain region: that 

is, the visual information in a face which modulates the activity of the given region.  Furthermore 

we have corroborated our results by performing a reverse (GLM) analysis and extended that 

analysis to range across different HRF sample points. Finally, we have shown the potential of 

analysing the function of a set of brain regions in terms of the visual information they process. 

We now turn to comment upon some specific aspects of our methodology.  

 We contrasted two complementary methods of analysis in the present work: one based on 

pre-existing work with Bubbles (see e.g. Schyns et al., 2007) and a novel randomization test, the 

                                                 
2 The probability, assuming independence of all selected brain regions, would be 0.2^8. Note that 
the same pattern (each pair of bilateral structures being grouped together in the same cluster) is 
evident for all cluster sizes ranging from 2 to 6, and that for cluster sizes of 7 to 9, the same three 
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other based on the GLM. The most important point is the degree of agreement between the two 

methods: although the two techniques are not always equal in terms of power (the GLM would 

seem to have more, on the whole) by using offset thresholds the overlap is very high. The fact 

that we can replicate our results with two different analysis methods gives us confidence in the 

validity of applying Bubbles to fMRI. We also note that while the Bubbles analysis and the GLM 

give similar results the Bubbles method provides a richer representation than the employed GLM 

– i.e. a two dimensional classification image representing the visual information modulating the 

BOLD signal for each voxel in the brain. Although we have simplified here by correlating such 

classification images with feature templates this is not the only approach one could take. 

A different type of approach, and one which is perhaps intuitively more appealing, would 

be to perform a PCA or a spatial ICA on the voxel-based classification images. This would give a 

natural means of grouping a specific configuration of visual information with a specific set of 

brain regions whilst making use, simultaneously, of the whole visual information space. As the 

present method does not make use of the whole information space, it is possible that sensitivity to 

different configurations of visual information exists within the brain but that we have not picked 

it up:  we can, however, be sure that we have captured the information sensitivity of the brain to 

both the eyes and the mouth for each expression considered (i.e. the critical visual information in 

the present task). Thus Bubbles does provide, in principle, a richer representation of the response 

properties of brain voxels. It would also be interesting, as an aside, to perform the Bubble analysis 

in a multivariate manner since different types of information have been shown to be detectable by 

univariate and multivariate methods of analysis (see e.g. Kriegeskorte et al., 2006).  

 We have, in addition, shown the potential of analysing the activity of a set of brain 

regions in terms of the information they process: our analysis successfully grouped together 

bilateral brain areas more often than would be expected by chance. Extending this analysis to 

                                                                                                                                                  
out of four of the bilateral structures are grouped together. Thus the ability to classify bilateral 
structures in terms of the visual information they are modulated by is non-chance. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 20

incorporate time as a factor (as we have done with the GLM method) we will potentially be able 

to trace the flow of visual information from one brain region to another. 

 On a different note, now that the validity of the basic method has been established we can 

foresee several potentially fruitful applications: for instance, what visual information is the 

amygdala modulated by in a multiple facial expressions task? There have been suggestions that 

the eyes are critical in fear (e.g. Whalen et al., 2004) but other work suggests that the amygdala is 

activated similarly in response to all emotions (e.g. Winston et al., 2003a). Thus it would be 

interesting to discover whether the amygdala is sensitive to the diagnostic information for the 

judgement at hand (e.g. the eyes in fear, the mouth in happy) or to a particular configuration of 

visual information across expression (perhaps the eyes). We would, however, have to adapt our 

scanning procedure to maximise the signal coming from the amygdala area to answer this 

question.  

Thus, in sum, we have put forward a new method with which to study the brain in the 

realm of high-level vision experiments. We have shown that it is possible to depict the visual 

information which modulates activity in different regions of the brain, separating out real 

sensitivity from noise. Further, our technique suggests that many important regions involved in 

facial expression processing are sensitive to the diagnostic information of the judgement at hand. 

Finally, by contrasting the information processing strategies of different brain regions, our 

method may provide a new way to identify candidate neural networks. We have now a new set of 

tools which allow us to analyse human brain function in an information processing space. 
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Figure Captions 

Figure 1: Examples of original (first row) and sparse stimuli used (second row), and behavioural 

classification images for each observer (bottom two rows) and expression (columns). 

 

Figure 2: Flow diagram indicating the main stages of fMRI data analysis. For a given observer, 

expression and voxel, we sort the bubble masks into two sums, those associated with greater and 

those associated with less than median BOLD amplitude. We form the voxel-based classification 

image as the difference of these two image sums. We then correlate all the voxel-based 

classification images, for a given expression and observer, with both a mouth (diagnostic for 

happy) and an eyes (diagnostic for fear) feature template, resulting in a mouth and an eyes r-map 

for that specific expression and observer. 

 

Figure 3: Regions displaying significant diagnostic information sensitivity on happy trials. (A) 

Regions displaying significant sensitivity to the mouth (diagnostic; first row - excluding right 

anterior cingulate) and the visual information each region is responding to (second row) for ETS. 

(B) Regions displaying significant sensitivity to the mouth (diagnostic; first row) and the visual 

information each region is responding to (second row) for EGA. 

 

Figure 4: Regions displaying significant sensitivity on fear trials for observer ETS. The first 

column shows the brain region significantly sensitive to the eyes (diagnostic; upper row) along 

with the visual information this region responds to (lower row) while the remaining columns 

show those brain regions significantly sensitive to the mouth (non-diagnostic; upper row) and the 

visual information each region is responding to.  
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Figure 5: Comparison of forward (Bubbles) and reverse (GLM) analysis methods. (A) 

Comparison of the two methods for diagnostic (mouth) information on happy trials (Bubbles - 

blue; GLM - green). (B) Comparison of the two methods for diagnostic (eyes) information on fear 

trials (Bubbles – red; GLM – yellow). Note that we use a different threshold for each method 

(Bubbles t>1.5; GLM t>1.8) reflecting the relative power of each method to detect significant 

regions. 

 

Figure 6: Comparison of ETS and EGA for an HRF sample point of 4s post-stimulus (GLM). (A) 

Areas observed sensitive for EGA to the diagnostic feature for each expression (happy – green; 

fear - yellow). (B) Areas observed sensitive for ETS to the diagnostic feature for each expression 

(happy – green; fear - yellow). Note we use a different threshold for the two observers (EGA 

t>1.5; ETS t>1.8) reflecting the fact that there are different numbers of trials per observer. STS = 

Superior Temporal Sulcus; AC = Anterior Cingulate; C/PrC/PC = Region including cuneus, pre-

cuneus bordering posterior cingulate. 

 

Figure 7: Diagnostic information sensitivity as a function of HRF sample point (observer ETS).  

(A) Flatmap projection of the sensitive diagnostic areas for each expression (happy – green; fear – 

yellow – both t>1.8) across a range of HRF sample points for observer ETS. (B) Time course of 

beta weights for selected ROIs for each expression (happy: left anterior cingulate, right middle 

temporal gyrus; fear: left superior frontal gyrus). The ROIs are defined as significant (t>1.99, 

cluster threshold of 300 voxels) at a HRF sample point of 4s post-stimulus. (C) The diagnostic 

information for each expression modulating the brain areas as shown in (A) and (B). MTG = 

Middle Temporal Gyrus; C/PrC/PC = Region including cuneus, pre-cuneus bordering posterior 

cingulate. 
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Figure 8: Hierarchical cluster analysis (single linkage algorithm using correlation distance metric) 

of the regions displaying significant diagnostic information sensitivity for ETS on happy trials (p 

<.1 voxel wise, arbitrary cluster threshold of 300 voxels, Bubbles analysis). Each row represents a 

different cluster of brain regions, with the second image in each row representing the cluster 

centroid of the given cluster (the first image is the thresholded version of the given centroid). The 

right hand side of each cluster shows the classification images for each different region assigned 

to that cluster. 
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Table 1 

Regions showing significant information sensitivity for each combination of observer, expression and feature template. 

Observer Expression  Template  Region    Laterality  TAL   Cluster Size 

 
ETS  Happy   D (mouth)  Anterior Cingulate  Left   -4 42 5  

 645  

            Right   7 36 8   

 384  

        Posterior Cingulate  Left   3 –59 17 

 303          Middle Temporal Gyrus Right  

 41 –64 28  412  

        Inferior Occipital Gyrus Left   -10 –92 –7 

 490  
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ETS   Happy   AD (eyes)  Nil          

       

ETS  Fear   D (eyes)  Superior Frontal Gyrus Left   -23 41 39 

 340               

 

ETS   Fear   AD (mouth)  Lingual Gyrus  Right   17 -89 –4  506   

         Cuneus   Left   -4 -72 21 

 313 

    Parahippocampal gyrus Left   -16 -30 –3  308 

    

… 

 

EGA  Happy   D (mouth)  Insula    Right   44 -2 12 

 328  

        Precuneus   Right   13 –57 19  400  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 30

EGA  Happy   AD (eyes)  Nil          

  

 

EGA  Fear   D (eyes)  Nil          

  

 

EGA  Fear   AD (mouth)  Nil          

  

 

P-maps were thresholded at p <=.05 voxel wise and further cluster size thresholded to ensure the probability of observing a false 

cluster was <=.05. D = diagnostic template, AD = anti-diagnostic template. 

 

 

Table 2 

Regions showing significant information sensitivity, for observer ETS, for each combination of expression and template at a 

liberal threshold. 
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Observer Expression Template  Region   Laterality TAL   Cluster Size  

 

ETS  Happy  D (mouth)  Anterior Cingulate  Left  -1 40 6   2033(1)  

           Right  5 37 25   1033(1) 

  

       Posterior Cingulate  Left  3 –59 17  759(1)  

Cingulate Gyrus  Left  -1 –47 26  466(1) 

Parahippocampal Gyrus Left  -25 –18 –15  1132(4) 

(Hippocampus) 

Parahippocampal Gyrus Right   32 –2 –13  605(4) 

(Amygdala) 

  

Inferior Occipital Gyrus Left  -11 –92 –7  898(1) 

Lingual Gyrus  Left  -13 –65 –2  331(1) 

     Right  14 –68 –4  558(1) 
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Inferior Parietal Lobule Right  58 –24 24  336(2)   

Middle Temporal Gyrus Right  41 –62 25  1103(3) 

     Left  -47 –66 21  307(2) 

Superior Temporal Gyrus Left  -46 –56 26  468(5) 

Supramarginal Gyrus  Right  56 –52 20  322(4)   

Temporal Lobe (subgyral) Right  46 –3 –9  916(13) 

Inferior Frontal Gyrus Right  41 25 –1  766(1) 

Insula    Right  36 –13 24  469(31) 

 

       

ETS  Happy  AD (eyes)  Nil 

 

 

ETS  Fear  D (eyes)  Superior Frontal Gyrus Left  -26 41 39  925(1) 

           Right  13 37 45  376(38) 
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       Inferior Frontal Gyrus Left  -41 22 9  573(8) 

       Middle Frontal Gyrus Right  41 25 44  317(9) 

 

       Middle Temporal Gyrus Left  -44 –55 13   310(1) 

       Superior Temporal Gyrus Right  44 –55 16   372(12)  

 

       Posterior Cingulate  Left   -3 –49 14  368(1) 

 

       Fusiform Gyrus  Right  44 –47 –20  343 

       Left Brainstem  Left  0 –22 –4  832(8)  

       (Red Nucleus) 

 

 

ETS  Fear  AD (mouth)  Medial Frontal Gyrus Left  -12 40 11  353(1) 

Middle Frontal Gyrus Left  -45 40 18  458(1)  
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Lingual Gyrus  Right  9 –90 –3  1702(6) 

       Cuneus    Left  -5 –72 21  676(1) 

Middle Occipital Gyrus Right  39 –68 7  401(20) 

       Inferior Occipital Gyrus Left  -26 –89 –11  478(6) 

   

Fusiform Gyrus  Right  40 –47 –20  959  

       Occipital Face Area  Right  32 –62 –18  626 

       

       Cingulate Gyrus  Right  7 –27 35  441(21) 

       

       Thalamus   Left  -16 –30 –2  601(5) 

       Insula    Left  -48 –19 22  325(12) 

       

       Superior Temporal Gyrus Left  -55 –52 16   303(24) 
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P maps were thresholded at p <=.1 voxel wise and a cluster threshold of >= 300 voxels was imposed to limit the chance of finding 

clusters by chance. We do this purely to observe trends evident in regions active across expressions and observers.  

The number in parentheses is an error measure of the location of the region (1 is best). D = diagnostic, AD = anti-diagnostic. 

 

 
 
 

Table 3 

Regions showing significant information sensitivity, for observer EGA, for each combination of expression and template at a liberal threshold. 

 
Observer Expression Template  Region   Laterality TAL   Cluster Size  

 

EGA  Happy  D (mouth)  Anterior Cingulate  Left  0 25 2   654(4)   

       Posterior Cingulate  Right  7 –43 7  304(6) 

       Cingulate Gyrus  Left  -15 –47 21  324(18) 

       Parahippocampal Gyrus Right  21 –37 –5  770(7) 
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       Lingual Gyrus   Left  -13 –69 –2  509(8) 

       

Inferior Parietal Lobule Right  58 –28 26  388(10) 

Precuneus    Right  13 –57 19  765(10) 

Postcentral Gyrus   Left  -49 1-5 20  690(24) 

       

       Insula    Left  -40 –3 13     424(14)  

           Right  46 -2 11  726(14) 

 

       Superior Temporal Gyrus Right  47 –32 5  1013(9) 

 

       Cerebellum   Right  2 -63 –26  344(1) 

           Left  -11 –36 –5  744(11) 

 

EGA  Happy  AD (eyes)  Anterior Cingulate  Right  5 30 10  336(1) 
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EGA  Fear  D (eyes)  Nil 

 

EGA  Fear  AD (mouth)  Posterior Cingulate  Right  8 –58 10  335(3) 

       Inferior Frontal Gyrus  Left  -39 28 10  997(9) 

  

 

P maps were thresholded at p <=.1 voxel wise and a cluster threshold of >= 300 voxels was imposed to limit the chance of finding 

clusters by chance. We do this purely to observe trends evident in regions active across expressions and observers.  

The number in parentheses is an error measure of the location of the region (1 is best). D = diagnostic, AD = anti-diagnostic. 
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